

Recent Progress in Developing Superconducting Power Lines

Alexander Chervyakov Institute for Advanced Sustainability Studies e.V. Potsdam, Germany Web: <u>www.iass-potsdam.de</u>

 Plants are set up to generate the electricity near the places where it is needed

- Contrary, natural gas and oil are transported over the distances of several thousand km periodically spaced by compressor stations
- In order to unlock RES potential much longer routes of electricity are required (Europe and Germany as a reference)

EU grid development

Source: TYNDP 2016

Institute for Advanced Sustainability Studies e.V.

b bing

@ 2015 Notes

Vision 4 - Installed capacities

C Biofuels

C Others RES Solar

Gas
Hard coal
Hydro
Hydro
Lignite
Nuclear
Oil
Others non-RES

•

Grid development Germany

- 4 HVDC corridors
- 12 GW
- 3 410 km

Source: Netzentwicklungsplan 2014

Unlocking RES potential

- Long distances
- Variable generation
- Integrity

RES and conventional HV power transmission systems

Source: Van Hertem&Ghandhari

HV (AC/DC) overhead lines

- Low cost, high efficiency
- Easy interconnection
- Good reliability
- Easy and quick to repair
- Lower transmission losses (DC)
- High cost of converter stations (DC)
- Multi-terminal operation (VSC)
- Large visual impact (right of way, land use)
- Large environmental impact (EMF)
- Strong dependence on weather conditions

500 kV AC ~ 300 m ± 800 kV DC ~ 130 m

Viable solution for very long distance bulk power transmission Low public acceptance No construction of new OHLs (France, Germany)

HV (AC/DC) power cables

- Less visual impact
- Reduced right of way
- Less EMF
- High cost
- Capacitive charging (AC)
- Space charge (DC)
- High converter cost (DC)
- Low capacity (DC VSC)
- Heat emission

500 kV HVAC cable \sim 40 km HVDC VSC cable \sim 320 kV/200-400 MW

Application in densely populated urban or business areas

Superconducting alternative

Superconducting

т

Temperature

Current density

domain

Β,

Magnetic field

The technology that capable of changing general principles of electricity transmission:

- high currents at low voltages (current rating up to 5 kA AC and much above of 20 kA DC)
- no needs for step up/down transformers
- moderate HV insulation

Common advantages:

- > zero resistive losses, higher efficiency, long distances
- high current carrying capacity: (>150 x copper) -> remarkable compactness in structure
- Iow dielectric losses (CD design)
- environmental friendly: no EMF radiation, no soil heating

refrigeration and associated losses

Superconducting materials

LTS - Low Temperature Superconductors (Nb3Sn, NbTi):

- Low cost raw materials and simple manufactory process (1 \$/kA m)
- But complex cryogenics at 4.2 K (-269 °C) with expensive LHe

HTS – High Temperature Superconductors (1G Bi 2223, 2G YBCO, ceramic based):

- Very expensive raw materials and complex manufactory process (100 \$/kA m)
- But simple cryogenics at 70 K (-203 °C) with LN2

SC Material	Main Coolant	Τ[Κ]	Thermo- d factor	Wire cost	Cryogenic complexity	Cable complexity
LTS	Liquid He	1.9-4.2	400	low (5-10 kA m)	high	low
HTS	Liquid N2	60-75	9	high (50-150 kA m)	low	high
MgB2	LH2 or gasHe+LN2	15-20	40	low (1-5 kA m)	low	low

Superconducting materials

Superconducting tapes and wires for current transportation

- 1st generation: multifilamentary Bi 2223 tapes (Top<77K)
- 2nd generation : YBCO Coated conductor tapes and wires (Top<77K)

MgB ₂ wires (Top<30K)	MgB ₂ SC filaments	Ma	aterial	Cost/(kA m) [\$]	type
		Al		3	Raw material
		Cu	I	15	Raw material
	CuNi alloy matrix	Mg) + В _[@ 20 К, 1 Т]	< 0.1	Raw materials
		Mg)B _{2 [@ 20 К, 1 Т]}	2 - 10	wire
		НТ	ГS [@ 77 К, 1 Т]	100-300	tapes

In-grid projects over the world (most HTS AC cables)

Institute for Advanced Sustainability Studies e.V.

Materials Valley

Conventional 110 kV cable

Conventional 10 kV cables

Superconducting 10 kV cable

St. Petersburg HTS DC CL project

HTS DC Line Specification Transmission power – 50 MW; Operating current 2.5 kA; Operating temperature 65 – 75K;

Operating voltage 20 kV Length – about 2500 m

Source: Sytnikov

MgB2: unique properties in between LTS and HTS

- Up to 20 km unit length
- Columbus
 - 4000 km/year capacity
 - Flexibility in form

5 GW at 250 kV

He cryostat

Source: A.Ballarino

FP7 Best Paths (2014-2018)

- Structure: Monopole
- Power: 3.2 GW
- Voltage: 320 kV DC
- Current: 10 kA
- Length: 30 m
- Cooling: He gas for MgB2 and LN2 for electrical insulation

30 m long MgB2 cable cooled by LH2 (VNIIKP, Moscow)

2 kA at 50 kV

Source: Vysotsky

Economic consideration

Südlink-Trasse (4 GW, 810 km)

Thank you for your attention !

